首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   904篇
  免费   35篇
  国内免费   3篇
测绘学   31篇
大气科学   51篇
地球物理   221篇
地质学   346篇
海洋学   69篇
天文学   149篇
综合类   2篇
自然地理   73篇
  2021年   8篇
  2020年   14篇
  2019年   13篇
  2018年   17篇
  2017年   24篇
  2016年   22篇
  2015年   21篇
  2014年   22篇
  2013年   49篇
  2012年   24篇
  2011年   45篇
  2010年   38篇
  2009年   61篇
  2008年   37篇
  2007年   31篇
  2006年   39篇
  2005年   43篇
  2004年   36篇
  2003年   25篇
  2002年   22篇
  2001年   19篇
  2000年   19篇
  1999年   9篇
  1998年   13篇
  1997年   12篇
  1996年   7篇
  1995年   10篇
  1994年   11篇
  1993年   7篇
  1992年   8篇
  1991年   9篇
  1990年   8篇
  1989年   10篇
  1988年   9篇
  1987年   14篇
  1986年   8篇
  1985年   13篇
  1984年   20篇
  1983年   19篇
  1982年   9篇
  1981年   11篇
  1980年   7篇
  1979年   8篇
  1978年   5篇
  1977年   5篇
  1976年   5篇
  1975年   5篇
  1958年   6篇
  1950年   5篇
  1948年   6篇
排序方式: 共有942条查询结果,搜索用时 31 毫秒
21.
ABSTRACT Data are presented about modern sediment discharge of the Swiss rivers and related to the size of catchments. The information reveals that the Central Alps have experienced denudation rates of ≈0.15 mm yr−1 in the foreland, and ≈0.5 mm yr−1 in the Alpine core. Mapping, however, indicates that modern erosion only affects 30–50% of the Alpine surface, and that fluvial and associated hillslope processes have focused erosion in 50–200-m-deep valleys. These valleys are incised into the glacial surface. If this limited spatial extent of erosion is considered, then effective erosion rates are significantly higher than average denudation rates. These effective rates equal or locally exceed modern rates of rock uplift. This implies that the modification of erosional processes related to the Pleistocene/Holocene climate change has resulted in an increase in the relief at a local scale. At a drainage basin scale, however, the relief appears not to change at present.  相似文献   
22.
We present a solid solution model, able to take into account short-range interactions up to the third nearest neighbor. This model has been applied to illite/smectite mixed-layer clay minerals and tests the relative thermodynamic stability of each illite/smectite stacking sequence. The non-ideal energy terms have been calculated, showing a strong decrease of the interaction energy as the distance between elements grows. From ΔG m calculations the model predicts the following succession in I/S stacking sequences as X i tends to 1:R1, R2 and then R3. This succession agrees well with some mineralogical observations in natural series. Received: July 12, 1996 / Revised, accepted: March 21, 1997  相似文献   
23.
Large magnitude earthquakes generated at source–site distances exceeding 100km are typified by low‐frequency (long‐period) seismic waves. Such induced ground shaking can be disproportionately destructive due to its high displacement, and possibly high velocity, shaking characteristics. Distant earthquakes represent a potentially significant safety hazard in certain low and moderate seismic regions where seismic activity is governed by major distant sources as opposed to nearby (regional) background sources. Examples are parts of the Indian sub‐continent, Eastern China and Indo‐China. The majority of ground motion attenuation relationships currently available for applications in active seismic regions may not be suitable for handling long‐distance attenuation, since the significance of distant earthquakes is mainly confined to certain low to moderate seismicity regions. Thus, the effects of distant earthquakes are often not accurately represented by conventional empirical models which were typically developed from curve‐fitting earthquake strong‐motion data from active seismic regions. Numerous well‐known existing attenuation relationships are evaluated in this paper, to highlight their limitations in long‐distance applications. In contrast, basic seismological parameters such as the Quality factor (Q‐factor) could provide a far more accurate representation for the distant attenuation behaviour of a region, but such information is seldom used by engineers in any direct manner. The aim of this paper is to develop a set of relationships that provide a convenient link between the seismological Q‐factor (amongst other factors) and response spectrum attenuation. The use of Q as an input parameter to the proposed model enables valuable local seismological information to be incorporated directly into response spectrum predictions. The application of this new modelling approach is demonstrated by examples based on the Chi‐Chi earthquake (Taiwan and South China), Gujarat earthquake (Northwest India), Nisqually earthquake (region surrounding Seattle) and Sumatran‐fault earthquake (recorded in Singapore). Field recordings have been obtained from these events for comparison with the proposed model. The accuracy of the stochastic simulations and the regression analysis have been confirmed by comparisons between the model calculations and the actual field observations. It is emphasized that obtaining representative estimates for Q for input into the model is equally important.Thus, this paper forms part of the long‐term objective of the authors to develop more effective communications across the engineering and seismological disciplines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
24.
The basaltic Martian meteorite Yamato 980459 consists of large olivine phenocrysts and often prismatic pyroxenes set into a fine-grained groundmass of smaller more Fe-rich olivine, chromite, and an interstitial residual material displaying quenching textures of dendritic olivine, chain-like augite and sulfide droplets in a glassy matrix. Yamato 980459 is, thus, the only Martian meteorite without plagioclase/maskelynite. Olivine is compositionally zoned from a Mg-rich core to a Fe-rich rim with the outer few micrometers being especially rich in iron. With Fo84 the cores are the most magnesian olivines found in Martian meteorites so far. Pyroxenes are also mostly composite crystals of large orthopyroxene cores and thin Ca-rich overgrowths. Separate pigeonite and augites are rare. On basis of the mineral compositions, the cooling rates determined from crystal morphologies, and crystal grain size distributions it is deduced that the parent magma of Yamato 980459 initially cooled under near equilibrium conditions e.g., in a magma chamber allowing chromite and the Mg-rich silicates to form as cumulus phases. Fractional crystallization at higher cooling rates and a low degree of undercooling let to the formation of the Ca-, Al-, and Fe-rich overgrowths on olivine and orthopyroxene while the magma was ascending towards the Martian surface. Finally and before plagioclase and also phosphates could precipitate, the magma was very quickly erupted quenching the remaining melt to glass, dendritic silicates and sulfide droplets. The shape preferred orientation of olivine and pyroxene suggests a quick, thin outflow of lava. According to the shock effects found in the minerals of Yamato 980459, the meteorite experienced an equilibration shock pressure of about 20-25 GPa. Its near surface position allowed the ejection from the planet’s surface already by a single impact event and at relatively low shock pressures.  相似文献   
25.
We present both statistical and case studies of magnetosheath interaction with the high-latitude magnetopause on the basis of Interball-1 and other ISTP spacecraft data. We discuss those data along with recently published results on the topology of cusp-magnetosheath transition and the roles of nonlinear disturbances in mass and energy transfer across the high-latitude magnetopause. For sunward dipole tilts, a cusp throat is magnetically open for direct interaction with the incident flow that results in the creation of a turbulent boundary layer (TBL) over an indented magnetopause and downstream of the cusp. For antisunward tilts, the cusp throat is closed by a smooth magnetopause; demagnetized ‘plasma balls’ (with scale ∼ few RE, an occurrence rate of ∼25% and trapped energetic particles) present a major magnetosheath plasma channel just inside the cusp. The flow interacts with the ‘plasma balls’ via reflected waves, which trigger a chaotization of up to 40% of the upstream kinetic energy. These waves propagate upstream of the TBL and initiate amplification of the existing magnetosheath waves and their cascade-like decays during downstream passage throughout the TBL. The most striking feature of the nonlinear interaction is the appearance of magnetosonic jets, accelerated up to an Alfvenic Mach number of 3. The characteristic impulsive local momentum loss is followed by decelerated Alfvenic flows and modulated by the TBL waves; momentum balance is conserved only on time scales of the Alfvenic flows (1/fA ∼12 min). Wave trains at fA∼1.3 mHz are capable of synchronizing interactions throughout the outer and inner boundary layers. The sonic/Alfvenic flows, bounded by current sheets, control the TBL spectral shape and result in non-Gaussian statistical characteristics of the disturbances, indicating the fluctuation intermittency. We suggest that the multi-scale TBL processes play at least a comparable role to that of macro-reconnection (remote from or in the cusp) in solar wind energy transformation and population of the magnetosphere by the magnetosheath plasma. Secondary micro-reconnection constitutes a necessary chain at the small-scale (∼ion gyroradius) edge of the TBL cascades. The thick TBL transforms the flow energy, including deceleration and heating of the flow in the open throat, ‘plasma ball’ and the region downstream of the cusp.  相似文献   
26.
The polar cusps of the magnetosphere are key regions for the transfer of mass, momentum, and energy from the solar wind into the magnetosphere. Understaning these key regions and the dynamical interactions that occur there are fundamentally important to determining the physical nature of the magnetosphere. In this paper we try to summarize many of the conclusions reached in the papers of this special issue emphasizing the present concepts and definition of the cusp, what variations could be temporal structures and what could be spatial structures. We address the need for further measurements and the role of present and planned projects to address these needs.  相似文献   
27.
The high-altitude dayside cusps (both northern and southern) are extremely dynamic regions in geospace. Large diamagnetic cavities with significant fluctuations of the local magnetic field strength have been observed there. These cusp diamagnetic cavities are always there day after day and are as large as 6 RE Associated with these cavities are charged particles with energies from 20 keV up to 10 MeV. The intensities of the cusp energetic ions have been observed to increase by as much as four orders of the magnitude when compared with regions adjacent to the cusp which includes the magnetosheath. Their seed populations are a mixture of ionospheric and solar wind particles. The measured energetic ion fluxes in the high-altitude cusp are higher than that in both the regions upstream and downstream from the bow shock. Turbulent electric fields with an amplitude of about 10 mV/m are also present in the cusp, and a cusp resonant acceleration mechanism is suggested. The observations indicate that the dayside high-altitude cusp is a key region for transferring the solar wind mass, momentum, and energy into the Earth’s magnetosphere.  相似文献   
28.
This paper explores how, and to what extent, a phase of relief-rejuvenation modifies the mode of surface erosion in an approximately 63 km2 drainage basin located at the northern border of the Swiss Alps (Luzern area). In the study area, the retreat of the Alpine glaciers at the end of the Last Glacial Maximum (LGM) caused base level to lower by approximately 80 m. The fluvial system adapted to the lowered base level by headward erosion. This is indicated by knickzones in the longitudinal stream profiles and by the continuous upstream narrowing of the width of the valley floor towards these knickzones. In the headwaters above these knickzones, processes are still to a significant extent controlled by the higher base level of the LGM. There, frequent exposure of bedrock in channels and especially on hillslopes implies that sediment flux is to a large extent limited by weathering rates. In the knickzones, however, exposure of bedrock in channels implies that sediment flux is supply-limited, and that erosion rates are controlled by stream power.The morphometric analysis reveals the existence of length scales in the topography that result from distinct geomorphic processes. Along the tributaries where the upstream sizes of the drainage basins exceed 100,000–200,000 m2, the mode of sediment transport and erosion changes from predominantly hillslope processes (i.e., landsliding, creep of regolith, rock avalanches and to some extent debris flows) to processes in channels (fluvial processes and debris flows). This length scale reflects the minimum size of the contributing area for channelized processes to take over in the geomorphic development (i.e., threshold size of drainage basin). This threshold size depends on the ratio between production rates of sediment on hillslopes, and export rates of sediment by processes in channels. Consequently, in the headwaters, erosion rates and sediment flux, and hence landscape evolution rates, are to a large extent limited by weathering processes. In contrast, in the lower portion of the drainage basin that adjusts to the lowered base-level, rates of channelized erosion and relief formation are controlled mainly by stream power. Hence, this paper shows that base-level lowering, headward erosion and establishment of knickzones separate drainage basins in two segments with different controls on rates of surface erosion, sediment flux and relief formation.  相似文献   
29.
30.
Libyan Desert Glass (LDG) is a SiO2-rich natural glass whose origin, formation mechanism, and target material are highly debated. We here report on the finding of a lens-shaped whitish inclusion within LDG. The object is dominantly composed of siliceous glass and separated from the surrounding LDG by numerous cristobalite grains. Within cristobalite, several regions rich in mullite often associated with ilmenite were detected. Mineral assemblage, chemical composition, and grain morphologies suggest that mullite was formed by thermal decomposition of kaolinitic clay at atmospheric pressure and T ≥ 1600 °C and also attested to high cooling rates under nonequilibrium conditions. Cristobalite contains concentric and irregular internal cracks and is intensely twinned, indicating that first crystallized β-cristobalite inverted to α-cristobalite during cooling of the SiO2-rich melt. The accompanied volume reduction of 4% induced the high density of defects. The whitish inclusion also contains several partly molten rutile grains evidencing that at least locally the LDG melt was at T ≥ 1800 °C. Based on these observations, it is concluded that LDG was formed by high-temperature melting of kaolinitic clay-, rutile-, and ilmenite-bearing Cenozoic sandstone or sand very likely during an asteroid or comet impact onto Earth. While melting and ejection occurred at high pressures, the melt solidified quickly at atmospheric pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号